Demand, Regulation, & Welfare on the Margin of Alternative Financial Services

Ryan McDevitt – Duke Fuqua Aaron Sojourner – Minnesota Carlson May 2015

Our Research Agenda

Estimate demand for check cashing using transaction data

→ a \$60 billion market affecting 8% of U.S. households

Evidence from a Price Cut

Response following cut identifies how sensitive customers are to price in this market

Two Key Margins

- Customers much more sensitive to service fees than travel costs
- Customers much more sensitive to checkclearing times than check-cashing fees

Optimal Policies

- State regulated fee cap & entry restrictions should favor lower fees
- Accelerating check-clearing times would have large impact on consumer welfare

Background on Check Cashing

"Check cashing" outlet converts checks into cash for a fee

- Used by those without a bank account or who want cash immediately
 - 17 million households unbanked
 - ~8% of U.S. households use check cashing each year
 - ~40% regularly receive paper checks
 - Average customer spends \$370 per year on fees
 - 2% fee on \$1000 to avoid 2-day check hold → 3992% APR
- Typically done at specialized, free-standing storefronts
 - Usually bare-bones facilities staffed by hourly-wage workers
 - Also provide services such as utility bill pay & money orders
 - Often located in low-income areas without banks
 - Have several systems in place to avoid cashing bad checks

Regulation and Policy on Mainstream-AFS Margin

Extensive area of regulation and policy

- FDIC's Advisory Committee on Economic Inclusion working to move consumers from AFS to mainstream accounts
- Federal Reserve Bank working to improve U.S. payments system (ACH)
- Dodd-Frank created CFPB and gave it authority to federally regulate CC
- Check cashing regulated by 36 states
 - NY rate cap currently at 2.01%, indexed annually to "inflation"
 - Entry limited to 0.3 miles of competitor (to promote "stability")

No previous work on check cashing or accelerated payments based on transaction data

Previous Work in Economics on Use of AFS

Why do some consumers use high-fee AFS instead of mainstream banking?

- Liquidity constraints?
 - Elliehausen & Lawrence (2001) payday survey
 - Agarwal, et al. (2007) and Cole, et al. (2008) work on tax rebates
- Lack of alternatives or high search costs?
 - Agarwal, Skiba, & Tobacman work on payday loans and credit cards
- Lack of trust?
 - Christelis, et al. (2010) and Cole & Shastry (2009)
- Cognitive biases or lack of financial understanding?
 - Bertrand & Morse (2009) and Skiba & Tobacman (2008)

Several surveys of check cashing: Berry (2005), Rhine, et al. (2006), Barr (2012)

Empirical Setting

Spring Bank

Opened in 2008 with stated mission to serve the under-banked population

- First new bank opened with headquarters in the Bronx since 1982
- Offers mix of financial services, including check cashing
 - Unique research opportunity
- Will cash checks for non-account holders
 - Few banks do this
- Account holders charged a fee only on "uncovered" portion of check
- Inside connection for acquiring data (Aaron is on BOD)

The Market

- South Bronx, New York
 - Large minority
 population on the
 financial margins → 75%
 have no discretionary
 income, 50% have no
 bank account
 - High travel costs
 - Few full-service banks →
 1/20,000 residents vs.
 1/3,000 in Manhattan
- Five nearest SB competitors
 - All charge the state cap for check cashing

A Brief History of Spring Bank's Prices

Opened in 2008 and charged state cap of 1.75%

- Competitors also at cap

Maintained 1.75% from 2009-2012

- Competitors at 1.82% (2009), 1.83% (2010), 1.86% (2011)

Fee Schedule in Early 2012

Not Enough Price Variation to Estimate Demand

A Brief History of Spring Bank's Prices

Opened in 2008 and charged state cap of 1.75%

- Competitors also at cap

Maintained 1.75% from 2009-2012

- Competitors at 1.82% (2009), 1.83% (2010), 1.86% (2011)

Instituted price cut in 2012

- \$1 for checks up to \$1000, 1% all others
- Competitors charged state cap 1.91%

Fee Schedule After Spring Bank's Price Cut

Basis for Our Identification Strategy

A Brief History of Spring Bank's Prices

Opened in 2008 and charged state cap of 1.75%

- Competitors also at cap

Maintained 1.75% from 2009-2012

- Competitors at 1.82% (2009), 1.83% (2010), 1.86% (2011)

Instituted price cut in 2012

- \$1 for checks up to \$1000, 1% all others
- Competitors charged state cap 1.91%

Spring Bank raised prices in 2014

- 1% for all checks for non-account holders
- \$1 for account holders with at least \$100 balance
- Competitors charged state cap 1.95%

Variation in Prices After Cut Allows Us to Estimate Demand

Model + Estimation for Check Cashing

Data and Model

Data → Customer ID, date, fee, face value, distance to Spring Bank, distance to five nearest competitors, deposit account with SB

Inferred Data → Fee at competitors, "hypothetical" checks in some cases

$$U_{ijct} = \alpha_1 (\text{Fee SB}_{ict} - \text{Fee Cap}_{ct}) + \alpha_2 (\text{Dist SB}_{it} - \text{min}\{\text{Dist}_{ijt}\}) + \alpha_3 \text{Deposit}_{ijt} + \epsilon_{ijct}$$

Latent utility for customer i, check c, store j, time $t \rightarrow \{0,1\}$ for cashing check at Spring Bank vs. nearest competitor

Identification

Price → distance fixed, # of transactions increases after price cut

- Fee for \$1000 check varies from \$1 to \$17.50 throughout panel
- Competitors blindly following state cap

Distance → willingness to travel increases with fee savings

- Home not chosen based on location of check cashers

Spring Bank Monthly Statistics: Before & After Price Cut

Variable	Mean Pre-Cut	Mean Post-Cut	t-stat
Tatal Classics Casis ad			
Total Checks Cashed	325.0	704.9	12.97
Total Face Value	186,083.6	362,884.7	8.72
Total Fees	3256.5	1711.8	-4.79
Average Rate	1.75%	0.37%	-29.09
Average Cap	1.83%	1.93%	15.95
CC Customers	191.9	303.1	12.09
New CC Customers	52.0	38.3	-2.62
CC Customers with DA	48.2	102.2	16.98
New CC Customers with DA	1.0	1.1	0.50
Average Distance to SB	0.66	0.74	6.41
Average Distance to Comp.	0.58	0.63	5.63
N	41	25	

Data from 66 months for <u>customers < 3</u> miles from Spring Bank & <u>checks with face value > \$100</u>

Spring Bank Customer Statistics for Estimation

Variable	Mean	Min	Max
1[Cash Check at Spring Bank]	0.612	0	1
Face Value of Check	523.28	100	8911.05
Fee at Spring Bank	6.86	1	155.94
Fee at Competitor	9.75	1.75	173.65
Fee Difference	-2.89	-172.65	0
Distance to Spring Bank	0.792	0	2.996
Distance to Nearest Competitor	0.665	0.002	2.803
Distance Difference	-0.127	-0.588	2.183
Deposit Account at Spring Bank	0.202	0	1

Data from 50,550 transactions for 3328 customers < 3 miles from Spring Bank & checks with face value > \$100

Main Regression Results

Variable	Coefficient	Std. Err.	Elasticity
Fee Difference $(lpha_1)$	-1.092	0.057	-5.892
Distance Difference ($lpha_2$)	-2.191	0.384	-0.884
Deposit Account ($lpha_3$)	1.719	0.223	
Constant	-0.445	0.136	

Logistic regression using data from N = 50,546 transactions for customers < 3 miles from Spring Bank & face value > \$100. Includes month & day fixed effects

Standard errors clustered by customer

Results Summary

- Typical customer with ~\$500 check facing a fee of ~\$10 (state cap of 2.01%) and equidistant from Spring Bank and a competitor
 - Cutting price by 1% (~\$0.10) → 5.9% more likely to come to Spring Bank
 - Moving customer 1% closer → 0.9% more likely to come to Spring Bank
- Customers much more sensitive to price than distance
 - Indifferent between saving ~\$2 and travelling extra mile
- More distant customers are more price sensitive
 - Potential for targeted promotions
- Customers with deposit accounts at Spring Bank are less price sensitive
 - Discounted \$1 fee for those with other accounts may not be necessary
- Wealthier customers more sensitive to distance than price
- Frequent customers very price sensitive

Implications for Spring Bank

Changes in Volume & Revenue Following Price Cut

Optimal Prices Based on Model Estimates

Use measure of customers' price sensitivity to determine optimal fee

- \rightarrow MR = MC = P(1 1/|Ep|)
- 1.55% when the cost of cashing a check is \$0
- 1.65% when the cost of cashing a check is \$2 + 0.3% bad check rate
- Would need MC of \$8.70 on \$523 check to rationalize charging 2.01%

- Spring Bank's cut went too far
 - Perhaps rationalized by spillovers?
- Analysis suggests optimal fees actually below state cap
 - Focal point collusion?

Check Cashing vs. Depositing

Data and Model

Data → Customer ID, date, fee, face value, distance to Spring Bank, distance to five nearest competitors, <u>check-clearing time</u>

 U_{ict} = $lpha_1$ Check Cashing Fee_{ict} + $lpha_2$ Check Clearing Time_{ict} + $lpha_3$ Distance_{it} + ϵ_{ict}

Latent utility for customer i, check c, time t

 \rightarrow {0,1} for cashing check at Spring Bank vs. depositing

Spring Bank Customer Statistics for Depositing

Variable	Mean	Min	Max
1[Cash Check]	0.166	0	1
Face Value of Check	966.21	100.01	5000
CC Fee	9.03	1	87.5
Distance Difference	0.093	-0.588	2.842
Days Until Check Clears	1.512	1	4
Days Until Check Clears – 1	0.752	0	1
Days Until Check Clears – 2	0.013	0	1
Days Until Check Clears – 3	0.205	0	1
Days Until Check Clears – 4	0.029	0	1

Data from 55,478 transactions for 864 customers < 3 miles from Spring Bank & checks with face value > \$100 & < \$5000

Percentage of Checks Cashed Instead of Deposited

		Days Until (Check Clears	5	
	1	2	3	4	Total
Overall	13.1%	22.5%	27.6%	27.4%	16.7%
Pre Price Cut Post Price Cut	9.6% 16.6%	19.4% 24.4%	21.1% 33.2%	22.7% 33.1%	12.4% 20.8%
Low Income High Income	17.9% 4.4%	24.5% 6.7%	29.7% 2.9%	33.5% 6.9%	21.2% 4.3%

Main Regression Results

Variable	Coefficient	Std. Err.	Elasticity
Fee (α_1)	-0.0301	0.0055	\$1 → 2.4%
Days Until Check Clears($lpha_2$)	0.150	0.0445	1 day → 12.9%
Distance Difference (α_3)	-0.717	0.588	
Constant	-1.840	0.171	

Data from 55,478 transactions for 864 customers < 3 miles from Spring Bank & checks with face value > \$100 & < \$5000. Includes day and month fixed effects

Standard errors clustered by customer

Policy Implications

Counterfactual with Lower Fees + Larger Territories

Protected Area x Cap = "Payoff"

Larger Protected Area →
 Lower Cap to maintain same payoff

Protected Territory	Equivalent Cap	Welfare Improvement
0.3 miles	2.01%	Baseline
0.4 miles	1.26%	16.8-32.8%
0.5 miles	0.92%	32.0-47.9%
0.6 miles	0.73%	40.2-56.2%

How much fees + travel costs decrease from baseline for average customer

Urgent Needs for Cash → Little Use for Mainstream Banking

Reducing fee cap may cause shift away from mainstream bank accounts

- Price cut led bank account holders to use more check cashing
 - Mean APR implied by those with bank accounts who cash checks to avoid two-day hold (e.g., \$980 today vs. \$1000 in two days → 3,892%)
 - ▶ And check cashing fees much higher in other states
 - 517.5% based on \$4.98 WTP per day on \$966 check
- Mandating one-day check-clearing times would reduce check cashing by 8.3%

Conclusions

Conclusions & Future Directions

Conclusions

- CC demand highly elastic with respect to price
- Consumers have strong preference for immediate access to cash
- Opportunity to improve welfare
 - Reduce fees and raise travel time
 - Accelerate check clearing

Future directions

- Model choice to open new bank account
- Include behavioral component
- Consider focal point collusion among check cashers
- Model entry & exit